Fructanos tipo inulina: efecto en la microbiota intestinal, la obesidad y la saciedad

Raúl Alfredo Armas Ramos, Duniesky Martínez García, Enrique Rosendo Pérez Cruz

Texto completo:

HTML PDF

Resumen

Fundamento: Los fructanos tipo inulina de cadena corta se nombran fructooligosacáridos (FOS) y son considerados prebióticos al beneficiar la salud del huésped.

Objetivo: Analizar tres de los más importantes beneficios a la salud de los fructanos tipo inulina como prebióticos.

Metodología: Se revisaron documentos publicados en diferentes bases de datos (PubMed, Medline, NCBI) en idioma inglés. Se escogieron los que aportaron datos sobre la influencia de los prebióticos en la microbiota intestinal, la obesidad y la saciedad. Se utilizó el método de análisis documental para evaluar los resultados de diferentes ensayos clínicos.

Resultados: Se revisaron un total de 70 artículos, de los cuales se seleccionaron 49 que contenían ensayos clínicos controlados y evidencias sobre los efectos beneficiosos en la salud de los fructanos tipo inulina.

Conclusiones: Los fructanos tipo inulina en general, y los fructooligosacáridos en particular, al ser fermentados en el tracto gastrointestinal producen ácidos grasos de cadena corta; estos productos de la fermentación favorecen el desarrollo de microorganismos beneficiosos en detrimento de otros perjudiciales. De igual forma los ácidos grasos de cadena corta pueden regular el metabolismo de los lípidos y la sensación de saciedad.

Palabras clave

Fructanos; fructooligosacáridos; prebióticos; microbiota intestinal; obesidad; saciedad; microbioma gastrointestinal; fructanos; prebióticos.

Referencias

Sudhir PS, Jadaun JS, Narnoliya LK, Pandeyl A. Prebiotic oligosaccharides: special focus on fructooligosaccharides, its biosynthesis and bioactivity. Appl Biochem Biotechnol [Internet]. 2017 [cited 2018 Jan 03];183(2):613-35. Available from: https://link.springer.com/article/10.1007%2Fs12010-017-2605-2

Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G, Goh YJ, et al. Prebiotics: why definitions matter. Curr Opin Biotechnol [Internet]. 2016 [cited 2018 Dec 22];37:1-7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744122/

Markowiak P, Ṥliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017 Sep 15;9(9):1021. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622781/

Han YZ, Zhou CC, Xu YY, Yao JX, Chi Z, Chi ZM, et al. High-efficient production of fructo-oligosaccharides from inulin by a two-stage bioprocess using an engineered Yarrowia lipolytica strain. Carbohydr Polym [Internet]. 2017 [cited 2018 Oct 1];173:592-9. Available from: https://www.sciencedirect.com/science/article/pii/S014486171730680X?via%3Dihub

Flores-Maltos DA, Mussatto SI, Contreras-Esquivel JC, Rodriguez-Herrera R, Teixeira JA, Aguilar CN. Biotechnological production andapplication of fructooligosaccharides. Crit Rev Biotechnol [Internet]. 2016 [cited 2016 Dec 20];36(2):259-67. Available from: https://www.tandfonline.com/doi/abs/10.3109/07388551.2014.953443?journalCode=ibty20

Hernández L, Menéndez C, Pérez ER, Martínez D, Alfonso D, Trujillo LE, et al. Fructooligosaccharides production by Chedonorus arundinaceus sucrose:sucrose 1-fructosyltransferase constitutively expressed to high levels in Pichia pastoris. J Biotechno [Internet]. 2018 [cited 2019 Dec 20];266:59-71. Available from: https://www.sciencedirect.com/science/article/pii/S0168165617317650?via%3Dihub

Ose R, Hirano K, Maeno S, Nakagawa J, Salminen S, Tochio T, et al. The ability of human intestinal anaerobes to metabolize different oligosaccharides: Novel means for microbiota modulation? Anaerobe [Internet]. 2018 [cited 2018 Dec 26];51:110-9. Available from: https://www.sciencedirect.com/science/article/pii/S1075996418300751?via%3Dihu

Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut [Internet]. 2016 [cited 2016 Dec 22];65(2):330-9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752653/

Fabbrocini G, Bertona M, Picazo Ó, Pareja-Galeano H, Monfrecola G, Emanuele E. Supplementation with Lactobacillus rhamnosus SP1 normalises skin expression of genes implicated in insulin signalling and improves adult acne. Benef Microbes [Internet]. 2016 [cited Nov 30];7(5):625-30. Available from: https://www.wageningenacademic.com/doi/pdf/10.3920/BM2016.0089

Boonma P, Spinler JK, Venable SF, Versalovic J, Tumwasorn S. Lactobacillus rhamnosus L34 and Lactobacillus casei L39 suppress Clostridium difficile-induced IL-8 production by colonic epithelial cells. BMC Microbiol [Internet]. 2014 [cited 2016 Jul 8];14:177. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094603/

den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res [Internet]. 2013 [cited 2016 Dec 20];54(9):2325-40. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735932/

Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature [Internet]. 2016 [cited 2017 Dec 27];535(7610):85-9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5114849/

Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science [Internet]. 2016 [cited 2016 Dec 20];352(6285):539-44. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5050524/

Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J [Internet]. 2017 [cited 2018 Jan 03];474(11):1823-36. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5433529/

Tochio T, Kadotam Y, Tanaka T, Koga Y. 1-Kestose, the Smallest Fructooligosaccharide Component, Which Efficiently Stimulates Faecalibacterium prausnitzii as Well as Bifidobacteria in Humans. Foods [Internet]. 2018 [cited 2018 Dec 26];7(9):140. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164784/

Liu F, Li P, Chen M, Luo Y, Prabhakar M, Zheng H, et al. Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Increase Bifidobacterium but Reduce Butyrate Producing Bacteria with Adverse Glycemic Metabolism in healthy young population. Sci Rep [Internet]. 2017 [cited 2018 Sep 18];7(1):11789. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603605/

Closa-Monasterolo R, Gispert-Llaurado M, Luque V, Ferre N, Rubio-Torrents C, Zaragoza-Jordana M, et al. Safety and efficacy of inulin and oligofructose supple mentation in infant formula: Results from a randomized clinical trial. Clin Nutr [Internet]. 2013 [cited 2016 Dec 20];32(6):918-27. Available from: https://www.clinicalkey.es/service/content/pdf/watermarked/1-s2.0 S0261561413000551.pdf?locale=es_ES&searchIndex

Lakshminarayanan B, Guinane CM, O'Connor PM, Coakley M, Hill C, Stanton C. Isolation and characterization of bacteriocin‐producing bacteria from the intestinal microbiota of elderly Irish subjects. J Appl Microbiol [Internet]. 2013 [cited 2016 Dec 22];114(3):886-98. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jam.12085

Ortega-González M, Sánchez de Medina F, Molina-Santiago C, López-Posadas R, Pacheco D, Krell T, et al. Fructooligosacharides reduce Pseudomonas aeruginosa PAO1 pathogenicity through distinct mechanisms. PLoS One [Internet]. 2014 [cited 2018 Jan 26];9(1):1-12. Available from: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0085772&type=printable

Chen G, Li C, Chen K. Chapter 6 Fructooligosaccharides a review on their mechanisms of action and effects. Studies Natural Products Chemistry [Internet]. 2016 [cited 2017 Dec 27];48:209-29. Available from: https://app.dimensions.ai/details/publication/pub.1003872125

Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin [Internet]. 2017[cited 2018 Jul 8];67(4):326-44. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5530583/

Ambalam P, Raman M, Purama RK, Doble M. Probiotics, Prebiotics and Colorectal Cancer Prevention, Best Pract Res Clin Gastroenterol [Internet]. 2016 [cited 2016 Dec 20];30(1):119-31. Available from: https://www.clinicalkey.es/service/content/pdf/watermarked/1-s2.0-S1521691816000135.pdf?locale=es_ES&searchIndex

Hersoug LG, Møller P, Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: Implications for inflammation and obesity. Obes Rev [Internet]. 2016 [cited 2016 Dec 22];17(4):297-312. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/obr.12370

Choque Delgado GT, Tamashiro WMDSC. Role of prebiotics in regulation of microbiota and prevention of obesity. Food Res Int [Internet]. 2018 [cited 2018 Dec 28];113:183-88. Available from: https://www.sciencedirect.com/science/article/pii/S0963996918305416

Kalliomaki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr [Internet]. 2008 [cited 2016 Dec 22];87(3):534-8. Available from: https://academic.oup.com/ajcn/article/87/3/534/4633266

Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature [internet]. 2006 [cited 2015 Dec 22];444(7122):1022-3. Available from: https://www.nature.com/articles/4441022a

Nicolucci AC, Hume MP, Martínez I, Mayengbam S, Walter J, Reimer RA. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology [Internet]. 2017[cited 2018 Jan 26];153(3):711-22. Available from: https://www.clinicalkey.es/service/content/pdf/watermarked/1-s2.0-S0016508517356986.pdf?locale=es_ES&searchIndex=

Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, et al. Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut [Internet]. 2013 [cited 2016 Dec 20];62(8):1112-21. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711491/

Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol [Internet]. 2013 [cited 2016 Feb 18];27(1):73-83. Available from: https://www.clinicalkey.es/#!/content/playContent/1-s2.0-S1521691813000619?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1521691813000619%3Fshowall%3Dtrue&referrer=https:%2F%2Fwww.ncbi.nlm.nih.gov%2F

Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr [Internet]. 2009 [cited 2016 Jun 03];89(6):1751-9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827013/

Genta S, Cabrera W, Habib N, Pons J, Carillo IM, Grau A, et al. Yacon syrup: beneficial effects on obesity and insulin resistance in humans. Clin Nutr [Internet]. 2009 [2016 Dec];28(2):182-7. Available from: https://www.clinicalkey.es/#!/content/playContent/1-s2.0-S0261561409000302?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0261561409000302%3Fshowall%3Dtrue&referrer=https:%2F%2Fwww.ncbi.nlm.nih.gov%2F

Kumar Bharti S, Krishnan S, Kumar A, Kishore Rajak K, Murari K, Kumar Bharti B, et al. Antidiabetic activity and molecular docking of fructooligosaccharides produced by Aureobasidium pullulans in poloxamer-407-induced T2DM rats. Food Chem [Internet]. 2013 [cited 2015 Jan 15];136(2):813-21. Available from: https://www.sciencedirect.com/science/article/pii/S0308814612013799?via%3Dihub

Teixeira G, Castro G, Bastos AB, Leitão PR, Botelho S. Fructo-oligosaccharide effects on serum cholesterol levels. An overview. Acta Cir Bras [Internet]. 2015 [cited 2016 Dec 22];30(5):366-70. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-86502015000500366&lng=en&nrm=iso&tlng=en

Mora S, Fullerton R. Effects of short chain fatty acids on glucose and lipid metabolism in adipocytes. FASEB J [Internet]. 2015 [cited 2016 Dec 22];29(1 Suppl):672-5. Available from: https://www.fasebj.org/doi/abs/10.1096/fasebj.29.1_supplement.672.5

Nakamura Y, Natsume M, Yasuda A, Ishizaka M, Kawahata K, Koga J. Fructooligosaccharides suppress high-fat diet-induced fat accumulation in C57BL/6J mice. Biofactors [Internet]. 2017 [cited 2018 Jan 26];43(2):145-51. Available from: https://iubmb.onlinelibrary.wiley.com/doi/full/10.1002/biof.147

Delzenne NM y Kok N. Effects of fructans-type prebiotics on lipid metabolism. Am J Clin Nutr [Internet]. 2001 [cited 2016 Dec 20];73(2 Suppl):456S-458S. Available from: https://academic.oup.com/ajcn/article/73/2/456s/4737578

Lehnert T, Sonntag D, Konnopka A, Riedel-Heller S König HH. Economic costs of overweight and obesity. Best Pract Res Clin Endocrinol Metab [Internet]. 2013 [cited 2016 Dec 22];27(2):105-15. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23731873

Hume MP, Nicolucci AC, Reimer RA. Prebiotic supplementation improves appetite control in children with overweight and obesity: a randomized controlled trial. Am J Clin Nutr [Internet]. 2017 [cited 2018 Dec 22];105(4):790-9. Available from: https://academic.oup.com/ajcn/article/105/4/790/4633966

Byrne CS, Chambers ES, Morrison DJ y Frost G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes [Internet]. 2015 [cited 2016 Jul 8];39(9):1331-8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564526/

Gomes da Silva MF, Dionísio AP, Ferreira Carioca AA, Silveira Adriano L, Pinto CO, Pinto de Abreu, et al. Yacon syrup: Food applications and impact on satiety in healthy volunteers. Food Res Int [Internet]. 2017 [cited 2018 Oct 22];100(Pt 1):460-467. Available from: https://www.sciencedirect.com/science/article/pii/S0963996917303587?via%3Dihub

Reimer RA, Willis HJ, Tunnicliffe JM, Park H, Madsen KL, Soto-Vaca A. Inulin-type fructans and whey protein both modulate appetite but only fructans alter gut microbiota in adults with overweight/obesity: A randomized controlled trial. Mol Nutr Food Res [Internet]. 2017 [cited 2018 Jan 03] Nov;61(11). Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/mnfr.201700484

Daud NM, Ismail NA, Thomas EL, Fitzpatrick JA, Bell JD, Swann JR, et al. The impact of oligofructose on stimulation of gut hormones, appetite regulation and adiposity. Obesity [Internet]. 2014 [cited 2016 Dec 20];22(6):1430-8. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/oby.20754.

Verhoef SPM, Meyer D, Westerterp KR. Effects of oligofructose on appetite profile, glucagon-like peptide 1 and peptide YY3-36 concentrations and energy intake. Br J Nutr [Internet] 2011 [cited 2016 Dec 22];106(11):1757-62. Available from: https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/effects-of-oligofructose-on-appetite-profile-glucagonlike-peptide-1-and-peptide-yy336-concentrations-and-energy-intake/404F50E31E45AC2E85CA7291B0641180

Pedersen C, Lefevre S, Peters V, Patterson M, Ghatei MA, Morgan LM, et al. Gut hormone release and appetite regulation in healthy non-obese participants following oligofructose intake. A dose-escalation study. Appetite [Internet] 2013 [cited 2016 Dec 22];66:44-53. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23474087

Ichimura A, Hasegawa S, Kasubuchi M Kimura I. Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Front Pharmacol [Internet]. 2014 [cited 2016 Dec 20];5:236. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4222138/

Chambers ES, Morrison DJ, Frost G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc Nutr Soc [Internet] 2015 [cited 2016 Jul 8];74(3):328-36. Available from: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/A1EFBE12AD6F9838EBE3D7314D1EE1B4/S0029665114001657a.pdf/control_of_appetite_and_energy_intake_by_scfa_what_are_the_potential_underlying_mechanisms.pdf

Isken F, Klaus S, Osterhoff M, Pfeiffer AF Weickert MO. Effects of long-term soluble vs. Insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice. J Nutr Biochem [Internet]. 2010 [cited 2016 Apr 16];21(4):278-84. Available from: https://www.sciencedirect.com/science/article/pii/S0955286309000059?via%3Dihub

Poeker SA, Geirnaert A, Berchtold L, Greppi A, Krych L, Steinert RE, et al. Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Sci Rep [Internet]. 2018 [2019 Jan 12];8(1):4318. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847601/

Pérez ER, Hernández L, Martínez D, Trujillo LE, Menéndez C, Sobrino A, et al. Inventors. Center of Genetic Engineering and Biotechnology. Method for obtaining 1-kestose. Patente WO 2014/044230/Patent EP 2 899 282 A1. Available from: https://patents.google.com/patent/US20150232898A1/en



Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.